Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 25(1): 12, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438989

RESUMO

BACKGROUND: Mutations in the gene DISC1 are associated with increased risk for schizophrenia, bipolar disorder and major depression. The study of mutated DISC1 represents a well-known and comprehensively characterized approach to understand neuropsychiatric disease mechanisms. However, previous studies have mainly used animal models or rather heterogeneous populations of iPSC-derived neurons, generated by undirected differentiation, to study the effects of DISC1 disruption. Since major hypotheses to explain neurodevelopmental, psychiatric disorders rely on altered neuronal connectivity observed in patients, an ideal iPSC-based model requires accurate representation of the structure and complexity of neuronal circuitries. In this study, we made use of an isogenic cell line with a mutation in DISC1 to study neuronal synaptic phenotypes in a culture system comprising a defined ratio of NGN2 and ASCL1/DLX2 (AD2)-transduced neurons, enriched for glutamatergic and GABAergic neurons, respectively, to mimic properties of the cortical microcircuitry. RESULTS: In heterozygous DISC1 mutant neurons, we replicated the expected phenotypes including altered neural progenitor proliferation as well as neurite outgrowth, deregulated DISC1-associated signaling pathways, and reduced synaptic densities in cultures composed of glutamatergic neurons. Cultures comprising a defined ratio of NGN2 and AD2 neurons then revealed considerably increased GABAergic synapse densities, which have not been observed in any iPSC-derived model so far. Increased inhibitory synapse densities could be associated with an increased efficiency of GABAergic differentiation, which we observed in AD2-transduced cultures of mutant neurons. Additionally, we found increased neuronal activity in GABAergic neurons through calcium imaging while the activity pattern of glutamatergic neurons remained unchanged. CONCLUSIONS: In conclusion, our results demonstrate phenotypic differences in a co-culture comprising a defined ratio of DISC1 mutant NGN2 and AD2 neurons, as compared to culture models comprising only one neuronal cell type. Altered synapse numbers and neuronal activity imply that DISC1 impacts the excitatory/inhibitory balance in NGN2/AD2 co-cultures, mainly through increased GABAergic input.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Animais , Humanos , Técnicas de Cocultura , Neurônios GABAérgicos , Mutação , Proteínas do Tecido Nervoso/genética
2.
Front Cell Neurosci ; 18: 1345349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510107

RESUMO

Multiple lines of evidence implicate increased neuroinflammation mediated by glial cells to play a key role in neurodevelopmental disorders such as schizophrenia. Microglia, which are the primary innate immune cells of the brain, are crucial for the refinement of the synaptic circuitry during early brain development by synaptic pruning and the regulation of synaptic plasticity during adulthood. Schizophrenia risk factors as genetics or environmental influences may further be linked to increased activation of microglia, an increase of pro-inflammatory cytokine levels and activation of the inflammasome resulting in an overall elevated neuroinflammatory state in patients. Synaptic loss, one of the central pathological hallmarks of schizophrenia, is believed to be due to excess removal of synapses by activated microglia, primarily affecting glutamatergic neurons. Therefore, it is crucial to investigate microglia-neuron interactions, which has been done by multiple studies focusing on post-mortem brain tissues, brain imaging, animal models and patient iPSC-derived 2D culture systems. In this review, we summarize the major findings in patients and in vivo and in vitro models in the context of neuron-microglia interactions in schizophrenia and secondly discuss the potential of anti-inflammatory treatments for the alleviation of positive, negative, and cognitive symptoms.

3.
Commun Biol ; 6(1): 472, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37117634

RESUMO

The examination of post-mortem brain tissue suggests synaptic loss as a central pathological hallmark of schizophrenia spectrum (SCZ), which is potentially related to activated microglia and increased inflammation. Induced pluripotent stem cells serve as a source for neurons and microglia-like cells to address neuron-microglia interactions. Here, we present a co-culture model of neurons and microglia, both of human origin, to show increased susceptibility of neurons to microglia-like cells derived from SCZ patients. Analysis of IBA-1 expression, NFκB signaling, transcription of inflammasome-related genes, and caspase-1 activation shows that enhanced, intrinsic inflammasome activation in patient-derived microglia exacerbates neuronal deficits such as synaptic loss in SCZ. Anti-inflammatory pretreatment of microglia with minocycline specifically rescued aberrant synapse loss in SCZ and reduced microglial activation. These findings open up possibilities for further research in larger cohorts, focused clinical work and longitudinal studies that could facilitate earlier therapeutic intervention.


Assuntos
Microglia , Esquizofrenia , Humanos , Microglia/metabolismo , Esquizofrenia/metabolismo , Inflamassomos/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Neurônios/metabolismo
4.
Stem Cell Res ; 64: 102925, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36154917

RESUMO

DISC1 is a scaffold protein involved in key developmental processes such as neuronal migration, differentiation and neurogenesis. Genetic variants of the DISC1 gene have been linked to neuropsychiatric disorders like schizophrenia, bipolar disorder and major depression. Here, we generated two isogenic iPSC lines carrying mutations in DISC1 exon 2 using CRISPR/Cas9 gene editing. Both lines express pluripotency markers, can be differentiated into the three germ layers and present a normal karyotype. The generated iPSC lines can be used to study the implications of DISC1 mutations in the context of neuropsychiatric diseases in vitro.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Mutação , Éxons/genética
5.
Cereb Cortex ; 32(20): 4619-4639, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35149865

RESUMO

Adolescence constitutes a period of vulnerability in the emergence of fear-related disorders (FRD), as a massive reorganization occurs in the amygdala-prefrontal cortex network, critical to regulate fear behavior. Genetic and environmental factors during development may predispose to the emergence of FRD at the adult age, but the underlying mechanisms are poorly understood. In the present study, we tested whether a partial knock-down of tuberous sclerosis complex 2 (Tsc2, Tuberin), a risk gene for neurodevelopmental disorders, in the basolateral amygdala (BLA) from adolescence could alter fear-network functionality and create a vulnerability ground to FRD appearance at adulthood. Using bilateral injection of a lentiviral vector expressing a miRNA against Tsc2 in the BLA of early (PN25) or late adolescent (PN50) rats, we show that alteration induced specifically from PN25 resulted in an increased c-Fos activity at adulthood in specific layers of the prelimbic cortex, a resistance to fear extinction and an overgeneralization of fear to a safe, novel stimulus. A developmental dysfunction of the amygdala could thus play a role in the vulnerability to FRD emergence at adulthood. We propose our methodology as an alternative to model the developmental vulnerability to FRD, especially in its comorbidity with TSC2-related autism syndrome.


Assuntos
MicroRNAs , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Esclerose Tuberosa , Tonsila do Cerebelo , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos , Proteína 2 do Complexo Esclerose Tuberosa/genética
6.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638595

RESUMO

Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Transtornos Mentais/terapia , Neuroglia/citologia , Animais , Astrócitos/citologia , Sistema Nervoso Central/citologia , Desenvolvimento de Medicamentos/métodos , Humanos , Inflamação/patologia , Microglia/citologia , Neurônios/citologia , Qualidade de Vida
7.
Front Mol Neurosci ; 14: 659856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054427

RESUMO

A common hypothesis explains autism spectrum disorder (ASD) as a neurodevelopmental disorder linked to excitatory/inhibitory (E/I) imbalance in neuronal network connectivity. Mutation of genes including Met and downstream signaling components, e.g., PTEN, Tsc2 and, Rheb are involved in the control of synapse formation and stabilization and were all considered as risk genes for ASD. While the impact of Met on glutamatergic synapses was widely appreciated, its contribution to the stability of inhibitory, GABAergic synapses is poorly understood. The stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin. Here, we show in vivo and in vitro that Met is necessary and sufficient for the stabilization of GABAergic synapses via induction of gephyrin clustering. Likewise, we provide evidence for Met-dependent gephyrin clustering via activation of mTOR. Our results support the notion that deficient GABAergic signaling represents a pathomechanism for ASD.

8.
Transl Psychiatry ; 11(1): 135, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608504

RESUMO

A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.


Assuntos
Proteínas do Tecido Nervoso , Esquizofrenia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Esquizofrenia/genética
9.
Stem Cells Transl Med ; 10(1): 50-56, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32864861

RESUMO

Studying human disease-specific processes and mechanisms in vitro is limited by a lack of valid human test systems. Induced pluripotent stem cells (iPSCs) evolve as an important and promising tool to better understand the molecular pathology of neurodevelopmental disorders. Patient-derived iPSCs enable analysis of unique disease mechanisms and may also serve for preclinical drug development. Here, we review the current knowledge on iPSC models for schizophrenia and autism spectrum disorders with emphasis on the discrimination between them. It appears that transcriptomic analyses and functional read-outs are the most promising approaches to uncover specific disease mechanisms in vitro.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Perfilação da Expressão Gênica , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética
10.
Stem Cell Res ; 48: 101961, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32911325

RESUMO

Fibroblasts were isolated from skin biopsies of four patients diagnosed with schizophrenia and from one healthy control. Patient fibroblasts were transfected with five episomal, non-integrative reprogramming vectors to generate human induced pluripotent stem cells (iPSC). Reprogrammed iPSC showed consistent expression of several pluripotency markers, loss of expression of exogenous reprogramming vectors and ability to differentiate into all three germ layers. Additionally, iPSC maintained their normal karyotype during reprogramming. These generated cell lines can be used to study early neurodevelopmental and neuroinflammatory processes in schizophrenia in a patient-derived in vitro model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Estudos de Casos e Controles , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Fibroblastos , Humanos , Esquizofrenia/genética
11.
Front Mol Neurosci ; 13: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265651

RESUMO

Age-related impairment of mitochondrial function may negatively impact energy-demanding processes such as synaptic transmission thereby triggering cognitive decline and processes of neurodegeneration. Here, we present a novel model for age-related mitochondrial impairment based on partial inhibition of cytochrome c oxidase subunit 4 (Cox4) of complex IV of the respiratory chain. miRNA-mediated knockdown of Cox4 correlated with a marked reduction in excitatory and inhibitory synaptic marker densities in vitro and in vivo as well as an impairment of neuronal network activity in primary neuronal cultures. Transcriptome analysis identified the deregulation of gene clusters, which link induced mitochondrial perturbation to impaired synaptic function and plasticity as well as processes of aging. In conclusion, the model of Cox4 deficiency reflects aspects of age-related dementia and might, therefore, serve as a novel test system for drug development.

12.
Transl Psychiatry ; 9(1): 179, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358727

RESUMO

Human induced pluripotent stem cells (hiPSC) provide an attractive tool to study disease mechanisms of neurodevelopmental disorders such as schizophrenia. A pertinent problem is the development of hiPSC-based assays to discriminate schizophrenia (SZ) from autism spectrum disorder (ASD) models. Healthy control individuals as well as patients with SZ and ASD were examined by a panel of diagnostic tests. Subsequently, skin biopsies were taken for the generation, differentiation, and testing of hiPSC-derived neurons from all individuals. SZ and ASD neurons share a reduced capacity for cortical differentiation as shown by quantitative analysis of the synaptic marker PSD95 and neurite outgrowth. By contrast, pattern analysis of calcium signals turned out to discriminate among healthy control, schizophrenia, and autism samples. Schizophrenia neurons displayed decreased peak frequency accompanied by increased peak areas, while autism neurons showed a slight decrease in peak amplitudes. For further analysis of the schizophrenia phenotype, transcriptome analyses revealed a clear discrimination among schizophrenia, autism, and healthy controls based on differentially expressed genes. However, considerable differences were still evident among schizophrenia patients under inspection. For one individual with schizophrenia, expression analysis revealed deregulation of genes associated with the major histocompatibility complex class II (MHC class II) presentation pathway. Interestingly, antipsychotic treatment of healthy control neurons also increased MHC class II expression. In conclusion, transcriptome analysis combined with pattern analysis of calcium signals appeared as a tool to discriminate between SZ and ASD phenotypes in vitro.


Assuntos
Transtorno Autístico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Esquizofrenia/metabolismo , Transtorno Autístico/patologia , Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neuritos/fisiologia , Neurônios/patologia , Esquizofrenia/patologia
13.
Mol Neurobiol ; 55(9): 7317-7326, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29404957

RESUMO

Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Moléculas de Adesão Celular/metabolismo , Giro Denteado/fisiopatologia , Técnicas de Silenciamento de Genes , Memória , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal , Estresse Psicológico/fisiopatologia , Animais , Giro Denteado/patologia , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto , Rememoração Mental , Ratos Sprague-Dawley , Estresse Psicológico/patologia
14.
Cereb Cortex ; 28(1): 395-410, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136108

RESUMO

GABAergic synapses in the basolateral amygdala (BLA) play an important role in fear memory generation. We have previously reported that reduction in GABAergic synapses innervating specifically at the axon initial segment (AIS) of principal neurons of BLA, by neurofascin (NF) knockdown, impairs fear extinction. BLA is bidirectionally connected with the medial prefrontal cortex (mPFC), which is a key region involved in extinction of acquired fear memory. Here, we showed that reducing AIS GABAergic synapses within the BLA leads to impairment of synaptic plasticity in the BLA-mPFC pathway, as well as in the ventral subiculum (vSub)-mPFC pathway, which is independent of BLA involvement. The results suggest that the alteration within the BLA subsequently resulted in a form of trans-regional metaplasticity in the mPFC. In support of that notion, we observed that NF knockdown induced a severe deficit in behavioral flexibility as measured by reversal learning. Interestingly, reversal learning similar to extinction learning is an mPFC-dependent behavior. In agreement with that, measurement of the immediate-early gene, c-Fos immunoreactivity after reversal learning was reduced in the mPFC and BLA, supporting further the notion that the BLA GABAergic manipulation resulted in trans-regional metaplastic alterations within the mPFC.


Assuntos
Segmento Inicial do Axônio/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Vicia faba/metabolismo , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Segmento Inicial do Axônio/efeitos dos fármacos , Segmento Inicial do Axônio/patologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/patologia , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Condicionamento Psicológico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/citologia , Hipocampo/patologia , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Atividade Motora/fisiologia , Fatores de Crescimento Neural/antagonistas & inibidores , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Reversão de Aprendizagem/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
15.
Neuropsychopharmacology ; 42(2): 473-484, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634356

RESUMO

Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Neurônios GABAérgicos/fisiologia , Inibição Neural , Sinapses/fisiologia , Potenciais de Ação , Animais , Ansiedade/fisiopatologia , Axônios/fisiologia , Complexo Nuclear Basolateral da Amígdala/citologia , Moléculas de Adesão Celular/genética , Neurônios GABAérgicos/citologia , Técnicas de Silenciamento de Genes , Potenciação de Longa Duração , Masculino , Potenciais Pós-Sinápticos em Miniatura , Fatores de Crescimento Neural/genética , Ratos Sprague-Dawley , Ratos Transgênicos , Ácido gama-Aminobutírico/fisiologia
16.
Sci Rep ; 6: 29710, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27405707

RESUMO

Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.


Assuntos
Dendritos/metabolismo , Giro Denteado/metabolismo , Neurônios GABAérgicos/metabolismo , Receptor EphA7/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Giro Denteado/citologia , Feminino , Neurônios GABAérgicos/citologia , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphA7/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
17.
Mol Neurobiol ; 53(2): 842-850, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25511445

RESUMO

The inhibitory synapses at the axon initial segment (AIS) of dentate gyrus granular cells are almost exclusively innervated by the axo-axonic chandelier interneurons. However, the role of chandelier neurons in local circuitry is poorly understood and controversially discussed. The cell adhesion molecule neurofascin is specifically expressed at the AIS. It is crucially required for the stabilization of axo-axonic synapses. Knockdown of neurofascin is therefore a convenient tool to interfere with chandelier input at the AIS of granular neurons of the dentate gyrus. In the current study, feedback and feedforward inhibition of granule cells was measured in the dentate gyrus after knockdown of neurofascin and concomitant reduction of axo-axonic input. Results show increased feedback inhibition as a result of neurofascin knockdown, while feedforward inhibition remained unaffected. This suggests that chandelier neurons are predominantly involved in feedback inhibition. Neurofascin knockdown rats also exhibited impaired learning under stress in the two-way shuttle avoidance task. Remarkably, this learning impairment was not accompanied by differences in electrophysiological measurements of dentate gyrus LTP. This indicates that the local circuit may be involved in (certain types) of learning.


Assuntos
Moléculas de Adesão Celular/metabolismo , Giro Denteado/metabolismo , Aprendizagem , Fatores de Crescimento Neural/metabolismo , Vias Neurais/metabolismo , Estresse Psicológico/metabolismo , Animais , Aprendizagem da Esquiva , Axônios/metabolismo , Comportamento Animal , Estimulação Elétrica , Neurônios GABAérgicos/metabolismo , Técnicas de Silenciamento de Genes , Potenciação de Longa Duração , Masculino , Ratos Sprague-Dawley
18.
Adv Neurobiol ; 8: 231-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25300139

RESUMO

The neuronal cell adhesion molecule neurofascin is expressed in highly complex temporally and spatially regulated patterns. Accordingly, many different functions have been described including control of neurite outgrowth, clustering of protein complexes at the axon initial segments as well as at the nodes of Ranvier and axoglial contact formation at paranodal segments. At the molecular level, neurofascin provides a link between extracellular interactions of many different interaction partners and cytoskeletal components or signal transduction. Such interactions are subject to intimate regulation by alternative splicing and posttranslational modification. The versatile functional aspects of neurofascin interactions pose it at a central position for the shaping and maintenance of neural circuitry and synaptic contacts which are implicated in nervous system disorders.


Assuntos
Moléculas de Adesão Celular/metabolismo , Bainha de Mielina/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Modelos Biológicos , Rede Nervosa/fisiologia , Neuritos/fisiologia , Neurônios/citologia
19.
Neurobiol Learn Mem ; 112: 53-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747273

RESUMO

The effects of stress on learning and memory are diverse, ranging from impairment to facilitation. Many studies emphasize the major role of the hippocampus, mainly its CA1 and CA3 areas, in the process of memory formation under emotional and stressful conditions. In the current review, we summarize work which suggests that the dentate gyrus (DG) of the hippocampus is likely to play a pivotal role in defining the impact of stress on hippocampal functioning. We describethe effects of stress on long term potentiation (LTP) and local circuit activity in the DG and the role of the amygdala in mediating these effects. As one of the brain regions known to have a high rate of adult neurogenesis, the effects of stress on DG neurogenesis will also be reviewed. Finally, we discuss exposure to stress during juvenility and its influence on the adult DG. The DG is a dynamic structure which is susceptible to stress. Under stressful conditions, its response is variable and complex, much like the behavioral outcomes of such circumstances. It is likely to significantly contribute to the diverse effects of stress on memory formation.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Giro Denteado , Potenciação de Longa Duração/fisiologia , Neurogênese/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Giro Denteado/fisiopatologia , Humanos , Estresse Psicológico/metabolismo
20.
Neurochem Res ; 38(6): 1092-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23054071

RESUMO

To perform their diverse biological functions the adhesion activities of the cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) might be regulated by local clustering, proteolytical shedding of their ectodomains or rapid recycling to and from the plasma membrane. Another form of regulation of adhesion might be obtained through flexible ectodomains of IgCAMs which adopt distinct conformations and which in turn modulate their adhesion activity. Here, we discuss variations in the conformation of the extracellular domains of CEACAM1 and CAR that might influence their binding and signaling activities. Furthermore, we concentrate on alternative splicing of single domains and short segments in the extracellular regions of L1 subfamily members that might affect the organization of the N-terminal located Ig-like domains. In particular, we discuss variations of the linker sequence between Ig-like domains 2 and 3 (D2 and D3) that is required for the horseshoe conformation.


Assuntos
Antígenos CD/química , Moléculas de Adesão Celular/fisiologia , Adesão Celular/fisiologia , Imunoglobulinas/fisiologia , Processamento Alternativo , Animais , Antígenos CD/genética , Proteínas Aviárias/química , Proteínas de Caenorhabditis elegans/química , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/química , Humanos , Imunoglobulinas/genética , Fatores de Crescimento Neural , Moléculas de Adesão de Célula Nervosa/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...